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ABSTRACT 

 The thermomechanical behavior of a solidifying steel shell in a continuous casting mold is 

affected by many phenomena, especially the interaction between the shell and mold.  In funnel-shaped 

molds, the mold causes an extra bending effect in the steel shell due to the significantly different shape 

of the mold hot face at the bottom of the mold compared with the top.  This effect can be quantified 

accurately with a simple analytical model: 
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where  bendingε  is the bending strain,  

 δ  is the thickness of the solidified shell, and  

 hr  is the horizontal radius of the funnel evaluated either at z or meniscusz ,  

 z is any distance below the meniscus, such as mold exit. 

 meniscusz is the distance between the top of the mold and the liquid pool meniscus  

 

Funnel designs naturally should be evaluated according to which produces the best product 

quality.  In this work, the best funnel design depends on the mechanism responsible for forming LFC 

crack defects.  Several distinct mechanisms may cause LFC cracks: 
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1)  LFC and other defects form at the meniscus due to disruption of liquid flux feeding at the 

meniscus between the shell and mold.  Such disruptions can be caused by slag layer 

solidification due to insufficient fluid flow between the SEN and the mold.  Funnel design 

impacts this mechanism by affecting the space between the SEN and the mold.   

2)  Hot-tear cracks form between the roots of dendrites at the meniscus (surface) and grow 

inwards as solidification progresses down the mold.  Meniscus problems, such as a finger of 

mold flux caught between the shell and mold at the meniscus due to level fluctuations are 

responsible for initiating such cracks.  Funnel design impacts this mechanism through its 

important effect on the flow pattern in the mold, especially in the funnel transition region (curved 

regions), which is susceptible to the largest level fluctuations.   

3)  Hot-tear cracks initiate beneath the surface of the shell, due to tensile strain applied 

across the roots of the dendrites, which concentrates in the inter-dendritic liquid films, and opens 

up sub-surface cracks.  These cracks later propagate through the solidified shell to penetrate the 

surface, due to overload (see mechanism 4).  Funnel design impacts this mechanism because the 

funnel causes additional mechanical bending strains in the shell.   

4)  Overload cracks occur at mold exit when the ferrostatic pressure exceeds the rupture 

strength of local thin spots in the solidifying shell.  Previous calculations show that this critical 

thickness is on the order of 3mm [5].  When a subsurface crack is present, the effective shell 

thickness is measured from the surface to the root of the crack. Thin spots in the shell can be 

caused by local gap formation, where the shell is lifted away from the mold or the local slag 

layer is too thick, or slag feeding is interrupted and replaced with low-conductivity gases.  

Funnel design and narrow face taper impact this mechanism because they influence gap 

formation between the mold and the shell. 

 

 Of course, a particular LFC cracking problem may be caused by a combination of mechanisms,  

The best funnel design depends on the mechanism that dominates the formation of those LFCs and other 

defects.  The first step is to determine how funnel design affects each LFC mechanism.  This work 

considers the optimization of funnel design according to several different mechanisms, but focuses on 

mechanisms 3 and 4, taking into account that thicker funnels are better to avoid mechanism 1. 
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1. FUNNEL MOLD GEOMETRY 
 The geometry of a funnel-shaped mold is described by three physical dimensions: the outer 

funnel width, the inner funnel width, and the funnel crown, as shown in Figure 1.  In practice, usually 

only the crown changes with distance down the mold.  Some molds have a zero inner funnel width, 

which can be taken as a special case of the equations presented in this section.  

 

 
Figure 1. Horizontal Funnel Geometry Terminology (Top View) 

 
 The funnel mold has two planes of symmetry, one through the middle of the wide faces and one 

through the middle of the narrow faces.  Their intersection suggests a natural coordinate system for the 

mold, as shown in Figure 2, with the positive z-axis pointing along the casting direction (“into the 

page”).  Consider the quadrant in the horizontal plane bounded by the positive x- and y- axes.  Figure 2 

defines the funnel geometry.  iw  is half of the inner funnel width, ow  is half of the outer funnel width, 

sw  is half of the strand width, c  is the crown, and st  is half of the strand width away from the funnel.  

 

 
Figure 2. Horizontal Funnel Geometry Variables 
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The surface of the funnel may be described using laws of geometry, including the Pythagorean 

Theorem and the law of similar triangles.  Note that i o sw w w< < .  To connect the ( ),x y  points 

( ),i sw t c+  and ( ),o sw t , with a reasonable degree of smoothness (to promote uniform heat transfer 

between the shell and mold and to facilitate solidification shrinkage with minimal stress), the funnel 

shape is defined by portions of two circles of equal radius.  The “inner curve” radius defines the 

transition from the “inner flat” region near the mold center to the funnel region, and the ”outer curve” 

radius sweeps from the middle to the end of the funnel region.  Geometrically, the inner curve sweeps 

from point ( ),i sw t c+  to point ( )( )2, 2o i sw w t c+ +  and is tangent to both the outer curve and the inner 

flat.  The outer curve sweeps from point ( )( )2, 2o i sw w t c+ +  to point ( ),o sw t  and is tangent to both 

the inner curve and the “outer flat” region that extends towards the narrow faces, ox w> .  The radius of 

both circles is defined by: 
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⋅
          (2) 

The hot face of the wide face depends on hr  according to the following piecewise equation of x : 
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    (3) 

Note that c  and hr  are both functions of distance down the mold. 

The crown may be expressed as a function of distance down the mold, as shown in the vertical 

section through the center of the wide face given in Figure 4.  Figure 4 also identifies some of the other 

important geometric features of funnel molds, including the “mold length,” m , which is the distance 

between the top and bottom of the mold plate, the “funnel length,” f , which is the distance below the 

top of the mold that marks the end of the funnel, the crown at the top of the mold Tc , and the crown at 

the bottom of the mold, Bc .  Note that f ml l≤  and B Tc c< .  Although many different shapes can connect 

the ( ),y z  points ( ),0s Tt c+  and ( ),s B ft c+ , this work uses a “radiused funnel,” a circular arc that is 

tangent to plane of the vertical mold surface in the lower portion of the funnel that is described by 

fz > .  



 5

The vertical radius must be calculated before the radiused funnel 

can be described, and is found with the Pythagorean Theorem: 

( )

2
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    (4) 

The piecewise function describing the crown of the radiused 

funnel is then: 

( )
( )22 0B v v f f

B f m

c r r z z
c z

c z
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= ⎨
⎪ ≤ ≤⎩

 (5) 

Note that both crown functions allow 0Bc =  (the funnel 

disappears entirely at fz = ).  Figure 5 clarifies the differences 

between the vertical funnel types.  This completes the funnel 

geometry definition.  

 
 
 
 
 

2. BEAM BENDING MODEL 
 Continuous casting funnel molds are unique 

among the various available mold shapes in that the 

shape of the mold hot face changes significantly from the 

top of the mold to the bottom.  All other mold shapes, 

from simple billets to complicated beam blanks, have 

only slight changes in shape due to mold taper.  The 

funnel mold hot face shape changes by several 

centimeters, as given by one of the crown functions 

described in the previous section.  This substantial 

change in position has consequences on mold taper, and 

it also bends the solidifying shell as it slides down the 

mold.  The bending effect can be easily modeled by 

treating the solidifying shell as a beam or plate. 

 
Figure 4. Vertical Mold Geometry 
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The basis for describing beam and plate bending in solid mechanics [1, 2] is mostly a 

geometrical argument.  Beams are long, slender members of various cross sections where one dimension 

is much greater than the other two dimensions.  A beam is loaded perpendicular to the longitudinal axis, 

which distinguishes it from a column, which is loaded along the axis.  Consider the initially straight 

beam made up of the solidifying steel shell of thickness δ  in the y -direction, and width sw  around the 

mold perimeter as oriented as shown in Figure 6, with the same coordinate system used in Figure 2.   

 

 
Figure 6. Beam Schematic and Coordinate System 

 
The elementary beam theory employed here considers only xσ , which is important to the 

formation of longitudinal cracks.  All other stress components are zero ( 0y z xy xz yzσ σ τ τ τ= = = = = ).  

The “neutral axis” of the beam must be determined as a part of the analysis.  It is defined as the region in 

the cross section where 0xσ = , as sketched in Figure 7.  The neutral axis experiences no change in 

length as the beam is deformed, and is located by integrating the stress distribution above and below the 

neutral axis, and determining constants to make the resultant forces balance: 

L U

x x
A A

dA dAσ σ=∫ ∫           (6) 

For a linear-elastic material with constant elastic modulus, the typical approach is to assume that axial 

stress varies linearly with y  ( x yσ η= ⋅ , where η  is a constant), which results in the neutral axis 

coinciding with the centroidal axis of the cross section (halfway through the thickness of the rectangular 

cross-section in the example problem).  However, in the present analysis of a solidifying steel shell, the 

assumption of constant elastic modulus is unreasonable.  The elastic modulus varies greatly through the 

shell thickness due to the dependence upon temperature of elastic modulus [3], as shown in Figure 8, 

and the large temperature gradients across the shell.  Thus, the solid material closest to the shell surface 

is much stronger than the recently-solidified material near the solidification front.  This makes the 

neutral axis only a few millimeters beneath the surface, even when the shell is over a centimeter in 

thickness.   
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Figure 7. Bending Stress Profile Across Beam Section Figure 8. Effect of Temperature on Steel Elastic Modulus 

 
Bending Strain Model 

The axial strain through a cross section is determined by the local radius of curvature at a point 

along the beam axis.  Consider a segment of undeformed thickness xΔ  along the beam axis, as shown in 

Figure 9a.  A line segment on the neutral axis in the segment of the beam will have constant length xΔ  

both before and after deformation.  Any other line segment of length sΔ  at a distance y  from the 

neutral axis will change length to s′Δ  when the beam is bent, as shown in Figure 9b.  The axial strain 

along that line segment is defined as: 

0
limx s

s s
s

ε
Δ →

′Δ − Δ
=

Δ
          (7) 

With only one nonzero stress component, beam theory requires that planar cross-sections remain planar 

after deformation (no warping).  Thus, the beam segment will deform so that its sides rotate to form a 

defined radius of curvature R , center point C , and subtended angle θΔ , as shown in Figure 9b.  The 

arc-length formula gives that the original length of the line segment (initially equal to the segment width 

xΔ ) of interest is s R θΔ = Δ , and the deformed length is ( )s R y θ′Δ = − Δ .  Substituting these lengths 

into the above definition of strain gives: 

( )
0

limx

R y R
Rθ

θ θ
ε

θΔ →

− Δ − Δ
=

Δ
         (8) 

which simplifies to: 

x
y
R

ε = −            (9) 
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Maximum 
Tensile 
Stress 

Maximum 
Compressive 
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This axial strain from bending is the total mechanical strain, defined as the sum of the elastic and plastic 

strains, which is equal to the thermal strain subtracted from the total strain in a solidification problem. 

 

 

 

Figure 9a. Undeformed Beam Element Figure 9b. Deformed Beam Element 
 

This strain in Equation (9) is simply the product of distance from the neutral bending axis and 

the local radius of curvature.  In general, the curvature κ  of a line is defined as: 
2

2

3
2 2

1

1

d v
dx

R
dv
dx

κ = =
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         (10) 

where ( )v x  describes the displacement of the beam in the y -direction.  If the slope of v  is small, and 

the curvature can be approximated as 2 2d v dxκ = , but this is not necessary with the funnel mold 

consisting of actual circles, and the full definition of curvature is maintained, giving: 1 hrκ = .  The 

strain developed in bending the beam from the straight configuration to the bent configuration is then: 

0 0
1

1
0

i

h i m
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h m o

o s

x w
r w x w

y
r w x w

w x w

ε

≤ ≤⎧
⎪ − ≤ ≤⎪= − ⎨ ≤ ≤⎪
⎪ ≤ ≤⎩

        (11) 

 This model can calculate the developing bending strain as a function of distance down the mold. 

This is accomplished by taking the difference between bending a straight beam to the shape at the 

meniscus and bending the same straight beam to the shape at some other distance below the top of the 

mold.  The difference represents the bending effect developed from bending a beam with the meniscus 

shape to the configuration at some other position, as illustrated in Figure 10. 
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If the geometry at given z  is such that the horizontal funnel radius is zero, then ( ) ( )x meniscusz y r zε = .  

This simple equation gives the strain of deforming the shell from its original funnel shape at the 

meniscus to completely flat (at the end of the funnel).  Substituting the definition of the horizontal 

funnel radius, and assuming the entire shell thickness for y in Equation (12) gives: 
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2 2 2 2
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    (13) 

 

Figure 10. Logic of “Developing” Bending Strain Model 
 
Bending Strain Rate Model 

Another quantity of interest is the strain rate at the solidification front.  The various cracking 

criterion available in the literature are expressed in terms of strain and/or strain rate.  The analytical 

model developed here allows the easy calculation of the strain rate by taking the first time derivative of 

Equation (16) after applying the transformation using the transformation C meniscusz V t z= ⋅ + , where CV  is 

the casting speed and t  is time.  The shell is assumed to grow as K t  , which has both reasonable 

accuracy and a closed-analytical form: 
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The time derivative of the horizontal radius function for the radiused funnel is given by: 
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3. MODEL VALIDATION 
To evaluate the accuracy of the bending model, its predictions are compared with the results of a 

realistic, elastic-viscoplastic two-dimensional coupled thermal-stress finite-element model of the 

solidifying shell.  Note that Equation (1) takes the neutral axis as the surface of the shell, i.e. use the 

entire shell thickness for y  in Equation (12).  This assumption introduces an error that evidently is 

cancelled by the remaining mechanical effect present in the mold: the net solidification shrinkage of the 

entire shell.  Figure 11 shows a plot of the analytical bending strain predicted at the solidification front 

in the inner curve region of a radiused funnel with iw  = 130 mm, ow  = 375 and 475 mm, f  = 850 mm, 

Tc  = 23.4 mm, and Bc  = 8 mm.  The lines labeled “numerical model” are from the corresponding finite 

element simulations, and actually plot the difference between (total strain – thermal strain) at the inner 

curve and at the center of the wide face ( x  = 0).  Subtracting the center profile removes the effect of 

solidification from the numerical prediction of the strain, and leaves only the bending effect.  

The favorable match between the numerical and analytical prediction clearly identifies the 

bending effect as the cause of the localized concentrations of mechanical strain in the funnel region, and 

also shows that this simple bending model can be applied in a parametric study to quantify the effect of 

different funnel geometries. 
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Figure 11. Comparison of Analytical and Numerical Bending Strain Predictions 
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4. PARAMETRIC STUDIES 
The effect of different funnel geometries on bending strain and strain rate are investigated using 

Equations (13) and (14).  Shell thickness at mold exit is taken as δ  = 10 mm and nominal funnel mold 

dimensions are iw  = 130 mm, ow  = 375, f  = 850 mm, Tc  = 23.4 mm, and Bc  = 8 mm.  Strain rate 

calculations are based on 5.5 m minCV =  and 1 22.79 mm sK =  to match the shell thickness at mold 

exit of the two-dimensional finite-element model, which is based on matching heat flux from plant 

measurements.   

 

Bending Strain at Mold Exit 

Attention is first focused on the bending strain developed at mold exit ( mz = ) in the inner curve 

region of the funnel, which is the most tensile.  Figures 12a and 12b show the effect of changing the 

funnel geometry, based on Equation 13.  With the meniscus 100 mm below the top of the mold, the 

crown at the meniscus is 20.4 mm.  Note the “funnel transition width” ( )o iw w−  is used to reduce the 

number of parameters in the equation defining the horizontal radius.  The bending strain is reduced with 

wider funnels and shallower crowns, with the limiting value being a parallel-sided wide face, which of 

course has no bending effect at all. In general, decreasing the crown influences the bending effect more 

than increasing the funnel transition width. 
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Figure 12a. Effect of Funnel Crown Figure 12b. Effect of Funnel Transition Width 
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Effect of Funnel Mold Shape  

The simple model enables easy comparison between funnels of different geometry. In general, 

the larger the horizontal radius, the less the bending effect, i.e. the inner funnel width should be 

minimized, the outer funnel width should be maximized, and the crown should be minimized. Changing 

the funnel length has little effect on the bending strain, but can significantly change the strain rate 

profile, which will be discussed later in the context of hot tearing. Figures 13-16 show the results of the 

analytical model bending strain predictions for different funnel geometries. 
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Figure 13a. Effect of Outer Funnel Width on Strain Figure 13b. Effect of Outer Funnel Width on Strain Rate 
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Figure 14a. Effect of Inner Funnel Width on Strain Figure 14b. Effect of Inner Funnel Width on Strain Rate 
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Figure 15a. Effect of Funnel Length on Strain  Figure 15b. Effect of Funnel Length on Strain Rate 
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Figure 16a. Effect of Funnel Crown at Top on Strain  Figure 16b. Effect of Funnel Crown at Top on Strain Rate 

 
 

5. HOT-TEARING PREDICTIONS 
The damage model created by Won [4] that quantitatively predicts hot tears in steels is used here 

to evaluate the cracking potential caused by the funnel mold. Won’s model predicts a critical damage 

strain in terms of the brittle temperature zone, ( 99%) ( 90%)B s sT T f T fΔ = = − = , and the average 

inelastic strain rate over the brittle temperature zone: 

( 99%) ( 90%)
( 99%) ( 90%)

s s

s s

f f
t f t f
ε εε = − =

=
= − =

        (16) 

The critical damage strain according to Won is then given by: 
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0.3131 0.8638

0.02821
c

BT
ε

ε
=

⋅Δ
          (17) 

The critical damage strain is compared with the accumulated damage strain in the brittle temperature 

zone, ( 99%) ( 90%)dmg s sf fε ε ε= = − = ; cracks will form if the damage strain exceeds the Won critical 

strain.  The ratio of accumulated damage to the critical damage defines the “damage index” 

dmg cD ε ε= , a single value which facilitates comparison of funnels. Quantities are defined in terms of 

the fraction solid, and are found by first determining the time at which a given point takes on the given 

fraction solid, and then calculating the inelastic strain at that time. 

 Attempting to perform this damage calculation on a two-dimensional model of the funnel mold 

revealed a great deal of numerical noise in the results, and so motivated by the discussion in the previous 

section, the results analytical bending model was superimposed upon the results of a one-dimensional 

slice model of the solidifying shell with realistic properties and heat flux. This model still showed 

considerable numerical noise, even with 0.06-mm element lengths in the mesh, as shown in Figures 17 

and 18. To work around the issue of numerical noise, the steel grade was changed to a higher-carbon 

steel which has a wider mushy zone and is therefore more crack sensitive. 
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Figure 17. BTZ Strains in a LC Steel Figure 18. Avg. Inelastic Strain Rate in a LC Steel 

 

Figures 19-22 show the aspects of the damage calculation for a 1 %wt. C steel for the nominal 

funnel geometry given above, as well as for a wider funnel, a longer funnel, and a parallel mold. The 

funnel clearly increases the damage strain and decreases the critical strain for an overall increase in 

damage index, but nevertheless no cracking occurs during normal operation of a funnel mold; some 

other effect is needed to cause a crack to form.  
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Figure 19. Avg. Inelastic Strain Rate in BTZ Figure 20. Accumulated Damage Strain in BTZ 

 

  
Figure 21. Won Critical Damage Strain Figure 22. Damage Index 

 

Increasing the width of the funnel, or more importantly the horizontal funnel radius, decreases the 

cracking potential caused by the funnel. Using a longer funnel slightly decreases the damage at points 

just below the surface, but increases it at points deeper beneath the surface; this is due to the wider 

mushy zone collecting more damage. 

 

6. CONCLUSIONS 
A simple analytical model (Equation (1)) has been developed that quantitatively describes the bending 

strain induced in the solidifying steel shell by interaction with funnel mold walls.  This simple model has 

been shown to be surprisingly accurate when compared with the results of a two-dimensional, elastic-

viscoplastic coupled thermal-stress finite element model.  The model shows that bending strain is 
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inversely proportional to the horizontal radius of curvature of the funnel mold.  Thus, a larger funnel 

radius is better and can be achieved by increasing outer funnel width, decreasing inner funnel width, 

and/or decreasing crown.  Increasing the funnel length is another method of reducing the strain rate, but 

this may have negative repercussions on hot-tear crack formation.  The potential of hot-tear crack 

formation was evaluated for funnel molds with the Won damage model by coupling the simple 

analytical model with a one-dimensional finite-element model of the solidifying shell. Under normal 

operation, funnel molds do not cause cracks though they do make the shell slightly more sensitive to 

crack formation. This can be reduced following the same guidelines just mentioned; a more gentle 

funnel (larger radius) is less susceptible to forming hot-tear cracks. 
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